Schwartz - QFT and the Standard Model To Chin Yu

Problem 2.1 We can write the transformation as perturbation series

' =z + ot + 6z
=t + 6t 4 5t?

The perturbation terms can be obtained via order-by-order comparison

P22 42 2

(2t6t — 2tvz) + (2t6t? + [6t V]2 — 22623 —22) = 0
which gives
ot = vz

vir
(=2

2
¢
2t(5t — ”7) +2r(LE — 52®) =0

~

<N

5t(2) — ©2
522 >, (@t are arbitrary)
€T =

N ‘

If we expand the full transformations, we have

2 = (x+vt)(1+ %2 +O(vh))

2
vTr
:x+vt+7+0(v3)

2

t
t’:t—i—vx—i—%—i—O(vB)

which agree with the results obtained from perturbation.
Problem 2.2
E =T7TeV
v = £ ~ 7000
m

B =~ 0.9999999898

v—c=(1-pB)c~3ms!

For the relative velocity we have
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Problem 2.3 The energy of the CMB photon is given by

E, ~ kTcymp = 0.00023 eV
At threshold, the final products should be at rest in the center of momentum frame. By mo-
mentum conservation we have
P,+P,=P,+ P,
mi +2E,(Ep +pp) = (mp + ma)?

(myp + m,r)2 —m?

/ _ P _
E,+ ngmgf oF, =A
2 2 _ 42 2
E, —m, = A" -2AE, + E,
A2+mz

Y]
~ 3.1 x 102 eV

To find the energy of the outgoing proton, we first find its speed via

pp + By =yB(myp +max)

E, +/E2—m2 .

8= mp + My
= VB 1
~ 2.6 x 101!

Thus
El, = ymy ~ 2.6 x 10°° eV

Problem 2.4 Yes, rotate about y-axis by 7 and then apply P.

Problem 2.5 Typical X-ray energy is on the order of 1 keV which is much larger than the
ionization energy of the electron on the order of 10eV. Therefore for most cases we can neglect the
binding energy of the electron.

We can find the frequency of the reflected X-ray via momentum conservation

P,+P.=P,+ P,

_(PW'FPE_P;)Q

2=m?+2P,-P,—2P.-P,—-2P,- P,

0=meEy, —m.E, — E,E/(1 - cosf)
E’Y

a 1+7%(1—cos€)

—~
g
—

[\V)
|

which looks like the following when plotted
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If the electron mass goes to zero, the only possible solution becomes £, = E, and ¢ = 0 because
the photon cannot have zero energy. In other words the interaction between the photon and the
electron will be turned off in this limit.

In classical EM the frequency of the outgoing radiation produced by the electron is the same
as the driving frequency which is the frequency of the incoming photon. Therefore the frequency
distribution is a constant function.

Problem 2.6

/OO dkO 5((k°)? — (k> +m?)0(k°) = S S

—0o0

(5(/€0 — wk) 4 (S(ko +wk)
(K°

2w

/ dk°
:/mdkoi‘s — k)

0

1

ka

where wy, = V k% + m?2.
The Jacobian for Lorentz tranformation is J = |det A| = 1. Therefore the measure d'k is
Lorentz invariant.

We can consider the following integral
I— / A 5(k2 — m?) (k")

Both the measure and the integrand are manifestly Lorentz invariant, thus I itself must be
Lorentz invariant. We can write I in another form

I= /d3k/dk05(k2 —m?)0(k°)
'k
ka

which gives us the desired result.
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Problem 2.7

az(e*mTaemf) = faT(e*z“TaemT) + (e*Z“Taez“T)aJr
— ez (acfr — aTa)eZ“T
=1
e~ et = 5 +a
aezalf — ZezaT _|_ezalfa

Thus

n(n|z) = zv/n{n — 1|2)
oz
Cn %cnfl
Zn
Cp, ﬁCO
Zn

where ¢, = (n|z), and ¢g = (0|e*2'0) = (0|(1 + za® + ...)|0) = (0]0) = 1.
To calculate the uncertainties, we first evaluate the following quantities

|Z|2n 5
(2lzh = Do lenl? = 32 5 =

2(n—1)
(z]alz) = chc;_l n= ZZ |<Z|1>' — el
n — :
<Z|ﬁ|z> - ZCHC;TL = |Z|26|Z|2
(z]aat|z) = ZCnCZ(TH- 1) = (|22 + 1)

(z|a?|2) = chc;_Q nn—1)= 22el*l’

‘ 2

Thus

2242|122+ 14 (2%)? — (2 + 2%)? 1

A¢® = (¢°) — (q)* = ST =5

AP = () — ()2 = [ = 2= — 14 (=) = (= = =) = -
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Thus i
ApAg = =
YA} D)

Assume |w) = Y b,|n) is an eigenstate of af, then we have

aflw) = an\/nJr 1jn+1)

S whaln) = 3 by Vi)
NG

bn = bnfli
w

In the last line we used by = 0. This is because 0 = (0|a’|w) = wby. Since all the coefficients
vanish, a does not have any eigenstate.
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Problem 3.1 Each additional derivative simply produces a minus sign after integration by parts,
therefore it is easy to see that the equation of motion is
oL oL

oL
— —Ouzm— + 0.0y 75— +etc. =0
9 0(0u0) " 9(0,0,9)

Problem 3.2 We can write the infinitesimal Lorentz transform as
1
Ay = 00 + ij;sgﬁ)waﬁ
where wqp is the rotation or boost parameter in the a — 8 plane. The factor of 1/2 is to avoid

double-counting (e.g. 1 —2 and 2 — 1 are the same rotation).
For example, for an infinitesimal rotation in the 1 — 2 plane we have

1 0 0 0 00 0 0
0 1 -wp 0 00 -1 0
"o 77
A=10 wp 1 o =%twfg 1 o o
o0 0 1 00 0 0
0 0 0 0
12) O 0 1 O R ) 1¢2
Ta? =0 1 o of =000
0 0 00

There are C4 = 6 such generators (3 rotations and 3 boosts), and in general we can write

TP = 5968 — 5587

Equipped with this formula, we can now calculate the Noether current corresponding to Lorentz
symmetry.

oL
8,Loxt = B, (mamnéxk)
auﬁj((xﬁ) v gH oL a)\¢ (0‘5
por 0mgn° I

oL

W(www

A (Ofﬁ) Y afB) af v
A A — LT z") = —LT P 51
au(TAj(’lﬁ ) =0
L 5 B _
OM(TeaP — TPa™) =0
Kaopy = Tpaxp — Typta

The third line we used the fact that an antisymmetric tensor contracted with a symmetry tensor
gives zero.

Now we want to evaluate this current for a free massive scalar theory. We first calculate the
stress-momentum tensor.

1
Tuu = - u¢au¢ + g;u/ (6A¢) guu§m2¢2 = Tup
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and also
1 1
aMT,uu = _82¢)8u¢ - au¢apav¢ + Eau(aA¢)2 - iau(m2¢2)
= —0°¢0,¢ — m*$0,¢ — 0" $0,0,¢ + 0" ¢, 000
=0
and
Kaﬁu = xﬁ(au(/l)aa(b + gua(aA¢)2 - guam2¢2) - xa(au(baﬂ(b + g,u[?(a)\(b)2 - guﬁm2¢2)
To check that the current satisfies the continuity equation, we take the derivative.
OuKapu = Tpadly — Tyupoh
= T,BO( — Lap
=0
Next we want to calculate the charge corresponding to the boost.

Koso = Tooxrs — Toixo

ngi—Pit
Qi:/gxid3.’b—Pit

:Ei'zfpzt
Q. Py
YTETE

Thus physically the conservation law means that the center of energy of the system Z; moves in
a straight line.
The final part of the problem follows trivially from the Heisenberg equation.

dQ; . L, 0Q;
dt = i[H, Qi + ot

0Q; ‘

rvals [H, Q]

In general, since Q; is a linear combination of position and momentum, [Q;, H] # 0. Therefore
@; is not an invariant of the equation of motion.

Problem 3.3 By adding a total derivative the energy-momentum tensor changes by

.G N
= 2= 96— X
1 nv 8(6“(,25) au¢ guua/\
o .
Q= | (0, XM — X d®
Q / S (a6 = 003
= 72/@)@ Bz
= 7280/X0d3:c
=0
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where the last equality is due to the fact that X* must vanish at the boundary.
For electromagnetism, the energy-momentum tensor is

oL 1,
T;w = mau/l)\ + Zg[LVF

1
= _F;L/\al/Ak + ZguVFQ
The first term is generally not symmetry.

Assume T}, is our new symmetrized tensor, then we must have

- 00, X° 90, X°
T = —F0,A) + F a0, A\ + =———0,Ay — =——2——0,A
{p} px0p An & Fin 0y + a(aMAA)a g 8(8,,AA)8” &

Thus we must have

00, X7
9(0,Ay) "
For which we can choose 1
XO' — 7F0'TAT
2
which gives
00, X° 0 1
z = —FTO, A,
O(0*Ay) 8(8,“4,\)(2 )

and thus leads to a symmetric energy-momentum tensor.

Problem 3.4 The Feynman diagram is given by
J(y)

X u J(z)

J(t)

where we have 5 points x,u,v,y, z,t. The point v can be on either the upper or lower branch,
so we have 2 diagrams in total.
Using the Feynman rules given in the chapter, we have

ho(x) = — )\2/d4u d*v dty d*z d* Tz, )T (u, )T (u, v)II(v, y) (v, 2)J (y)J (2)J (t)
—)\Q/d4ud4v d*y d*z d* (2, w)TT(w, y) T (u, v) (v, )I(v, 2)J (y)J (2)J ()

=— 2)\2/d4u d*v d*y d*z d* Tz, w) 1T (u, )T (u, v)TI(v, y) (v, 2)J (y)J () (t)

Send comments to ytc@stanford.edu 3


mailto:ytc@stanford.edu

Schwartz - QFT and the Standard Model To Chin Yu

From perturbation theory we have
Duhg = 2)\h1 (u)ho(u)

= 2)\2/d4v d*y d*z T (u, v)TL(v, y)(v, 2)J (y)J (2) /d4tH(u7t)J(t)
he = —2)\2/d4u d*v d*y d*z d* Tz, )T (u, t)TT(u, v)II(v, y)T (v, 2)J (y)J (2)J (t)
So the two results match.

Problem 3.5 The equation of motion is

O+ m?— 28 =

3!
A
m?c = =¢?
3!
6
c=0, £ Xm

6 3m?
V(0) =0, V(i\/:m) =5

The non-zero solutions are the ones corresponding to the ground state.

The only state that respect the Z, symmetry is the state ¢ = —¢ = 0. The ground state picks
out either the positive or the negative direction so that symmetry is broken.

If we expand around the ground state, we get

1 1 1 A
L= _5(6 +m)0r + §m262 +mPem + §m2ﬂ'2 - E(c4 + 43T + 6272 + der® + 7t

We see that now there are some odd powers of 7 in the Lagrangian that breaks the Zs symmetry.
The equation of motion is

—Or +m?r — i027r — émrz — iw?’ =0

2! 2! 3!

The Zs transformation of ¢ corresponds to m — —n — 2¢. The Lagrangian is obviously invariant
in this transformation (because this is just ¢ — —a¢!).

Problem 3.6 The equation of motion is given by the Proca equation.
OpF +m?A, = J,
Taking divergence we have

0,0, Fy + m?0,A, =0
9,4, =0

The last line we use the fact the F),, is anti-symmetric so the double derivative vanishes.

Send comments to ytc@stanford.edu 4


mailto:ytc@stanford.edu

Schwartz - QFT and the Standard Model To Chin Yu

The equation for Ay for a point charge is
aﬂ(aﬂAO - 8014;4) + m2A0 = 6(5(3) (:1';)
O+ mz)AO — 65(3)(.%)

e
A= — — 5B
0 7A+m26 (@)

d3k e .
Ao = / (2m)3 k2 + m2°

_ e /oo " k2 etkr _ e~ tkr
(2m)? Jo k% 4+ m? ikr

e > k , > k .
— dk ikr dk 7zkr:|
47T2i7“[_/0 K2t m2’ /0 K2+ m2e

e > k ,
_ dk ikr
424y / k2 +m? ¢

—0o0

where in the second line we used the fact that the potential is static so its time derivative
vanished.
Evaluating this with contour integration gives

e m

Apg = — —— g=mr
*" 27 2im
€ —mnr
=—e
dmr
In the limit m — 0 (massless photon), we recover the Coulomb potential Ag = e/47nr, as

expected.

The main difference between the Yukawa potential and the Coulomb potential is that the Yukawa
potential has a characteristic range given by R ~ 1/m.

For this to be a candidate for force between proton, the characteristic range should be on the
order of the proton radius, which corresponds to a mass of m ~ 1fm~! ~ 200 MeV.

Let us try to substitute the gauge constraint into the Lagrangian.

1 1
L= —5(0u A0, Ay = 0, A0, A) + imQAi —A,J,
1 1
= S (404, - 4,0,0,A,) + §m2Ai - AuJd,

1
= §Au(D +m?) A, — Ay,

where in the second line we have integrated by parts.
The equation of motion becomes

OA, +m?A, =J,
The constraint now becomes
O+ m2)(8MAH) =0
0=0

In the original Lagrangian the mass acts as a Lagrange multiplier. If we turn off the mass the
constraint will vanish.
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Problem 3.7 The Lagrangian has the unit of energy per volume, i.e. mass power is 4. Thus,
looking at the first term, we know that h? has unit of energy per length so h has mass power 1.
Therefore a = b = —1.

The first order solution is just
-1
B = _Mpm
4dmr

The appearance of the additional 47 is just because some factor of 47 has been dropped in the
Lagrangian. We can drop the factor of 47 and instead write

—1
_Mpm

r

R —

The second-order correction is given by
Or® = Mp'O(hM)?
h® o Ml (hV)?
M1§l3m2
R

The orbital frequency and the Newtonian potential u = M;llh are related by

ou
2R_
w —|ar‘r:R

2 GNmSun
w = 7R3
w~ 107757t

The correction to w is given by
1
dw = —6(w?
W= 5 (w?)

2 2

_ lGNmSun
w Cc2R*
~ 10_145_1

~ 10 arcsec/century

Note that factors of ¢ has to be restored as needed to produce the correct dimension.
The effect from other planets can be estimated to be

1 Gmy;
ow ~ — E !
AR

~1071%s

~ 10? arcsec/century

If we derive (3.91) from (3.90), we get an additional term ~ Mp,'hJh. This term is the same
order as M ;llﬂhQ. For order-of-magnitude estimates dropping a few terms with the same order
doesn’t really matter.
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Problem 3.9 Let us substitute the gauge condition 9,4, into the Lagrangian a la problem 3.6
to get

1
L= §AMDAM - J.A,
The equation of motion is given by
04, =J,
Substituting this back to the Lagrangian gives

1
£ = _§A#DA#

1 [ d*% d* Lo e
= —— - i(k+k")x
2 / (277)4 (271‘)4 Jll(k) kQ Jll(k )6

4
=5 | G Iub) g ()

Choosing k,, = (w, k,0,0), we have, in momentum space,

kuJ,.(k) =0
wdo(k) = kJi(k)

Therefore we can rewrite the Lagrangian as

= s [T () — 5 T To(—) — Ta K)o () — T8I ()]
1

= o (K)o k) = s [T (D (—) + Jo() Jo ()

w? —

Thus the time derivative of .Jy disappeared.

1 d*k d*k 1 ; /
L~ = = Jo(k)Jo(k)etkHR)T 4

2 | G o

1 3k K 1 , /

=2 | ————Jo(t, k)= Jo(t, K e " RTED®
2/ (271')3 (271')3 O( ) )k:2 0( s )6 +
If we transform back to position space, we note that the first term couples Jy at different points

in space but at the same moment in time, thus being non-local. However, this non-local degree of
freedom is not physical as it can be removed by further gauge fixing. For example choosing the
gauge Ag = 0 will remove all appearances of Jy in the Lagrangian.
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Problem 4.1 Both electrons and muons couple to the photon field with the same strength. Thus
the interaction can be written as

V= ge [ dviv. + vuov,

Note that here we have neglected the difference between particle and anti-particle but for a
rough argument like this it doesn’t really matter.

Again the first order term is zero because both initial and final states contain no photon.

The retarded and advanced intermediate states are [n(®) = |¢7) and [n(V)) = [lp2¢7¢2t).
The relevant matrix elements are

1

Vi = st [ doveovfuses)
2m)36®) (py + p2 — py)
et / 0 b 67)

= e(27m)%0® (p3 + ps — py)
V) = (i itV Inie?)

= (@SS V|0) (il e l?)

= 6(27T)35(3) (p3 +pa +py)
6(27T)35(3) (p1 +p2 +py)

o

(R) _
Vi =

M| —

(A4)
Vin

Therefore the transfer matrix element is

3) 583 _
(R) _ 2 6[0 (p3 + pa — p,)0) (p1 + p2 — py)
1 = ¢ [ dp, (2m)° )
26271
E\+E, — E,
, 1

= —
E —E,

T = 2 / dp,, (2m)° [5(3) (P3 + 1+ p,)0™ (p1 + 2 + py)

FE;,— F,
— o2 1
 E1+Ey— (E1+Ey+ E,+ E3 + Ey)
9 1
=e
_(E3+E4>_Ev
26271
—F - E,

where E' = Ey + Ey = E3 + E,. If we let k = (E’, p,) be the virtual off-shell momentum of the
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photon, then the transfer matrix is simply

Ty =T50 + T}
=’ 22E7 2
E? - E2

2

25 (5)
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Problem 5.1

dgpf dspB 1 1
(2m)3 (2m)3 2E; 2ER

1 1
S8(Ef 4+ FEp — E; — ma)p2dps— —

dlipips = (277)454(2 p)

o
1672

To proceed we change variable from py to z(py) = Ef + Egp — E; — m4 using

dv  dEy dEp pi+pf + p; cos 6

dp; — dp;  dpy  Ej Ep
dQ 1
dIl = ;
LIPS ™ 1672 {pf Eppy + Eypy + Eyp; cos 0}
_dQ { 1 }
1672 LB + Bp(1+ 2 cos) )"

8 | : |22 pmp
dQY  64n2my EB—f—Ef(l—i—%CosQ) i

where we have used v; = p;/F;.
Problem 5.2 See problem 2.6

Problem 5.3 Let us work in the rest frame of the decaying muon and take the direction of the
outgoing electron neutrino to be the z-axis.

dllp ps = (27)*6* 5 3 (2]

rips = (2m) (Zp) (2m)3 (2m)3 (27)3 2E, 2E,,. 2E,,,
1 4mpedp. EdEdS)

8(2m)5 \/pg + E2 +2p,F cos

1 ! dcosf
=—— | dm—p.—FE —p, edeEdE'/
4(2m)3 / ( P Poy)pedp ~1 P2+ E%+2p.Ecosl

1
=— —pe — E — puu)dp. EAE
12m)? /5(m Pe Pv)dpeEd

1
= Sy DAE

2 2 m/2
r= LGFB/ (m? — 2mE)E*dE
8(277) 0
GZmb
19273

Note that the upper bound for F is m/2 because otherwise there is no way to balance the
momentum such that sum of momentum is zero.
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If we put the muon mass m = 106 MeV, we get

I'=3x 10" MeV
r=T"1=6.5x 10" fm
=218 us

The percentage discrepancy is around 1%, which might be due to non-zero electron mass (m, ~
0.5MeV ~ 1% m,,).

Problem 5.5 The classical Rutherford cross-section is given by

do Z%a?
dQ  4E2 sin(0/2)

where o = 5 is the fine-structure constant. This assumes that the alpha particle is non-

relativistic and the nucleus is heavy enough that we can neglect the recoil.
We replace e? by 2Ze? and m, by muto get

do 16Z%a2m?
aQ k4

o

The momentum of the virtual photon is just equal to the change of momentum in the alpha
particle which is given by

k, = mqu(0,cos6 —1,sin0,0)
E* = 2m%v?(1 — cos )
= 8m, Ex sin®(0/2)
Therefore
do Z2a?
dQ 42 sin*(0/2)
which matches with the classical expression.
There is no real reason why the leading contribution from both classical and quantum mechanics
should match so there is no way to know ahead of time. Rutherford was very lucky in this regard.
For electron-electron (Mgller) scattering this formula breaks down because we can no longer

neglect the recoil and treat the other electron as a static field. Also there are important contributions
coming from the spin structure of the electrons.
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Problem 6.1 We first calculate the case for At = 0 and promote our answer using Lorentz

invariance.

d*k 1 ik
_ _ ik(z1—x2)
Dp (21 = m2) / (2m)* k2 — m2 + i’
_ A3k dfko ? eik"(tl—tz)efik-(mlfrz)
(2m)3 27 (K9)2 —w? 4 ie

(27)3 2w + e

- z/ dk K el (pikr _ gikr)
(27)2 2rw + ie

3
_/ d°k 1 e_iw|t1—t2|e—ik~(a:1—xz)

= / dk k sin kr
) @) eVEZ £ m? +ie
m
T Arr + e
1
472r2 + e

Ki(mr)

Therefore by Lorentz symmetry the propagator must be

Dy 1 _ 1
£ 4r2(AL2 — r2) e An2(xy — x2)2 + i€
Problem 6.2
Pr 1 - ,
Dn =0 o_,0 = o—tk(z—y) _ ik(z—y)
R (l’ Yy )/ (271_)3 2Wk: € )

d3k, 1 1k-(x— —iwp (20 —y° iwp (20 —y°
Rl B G )

3 0
:/ dk eik-(w—w/ﬂ L e
(2m)3 2mi (kO +ie)? — wy

) dk efik(mfy)
- Z/ 2m)% (K0 + ie)2 — k2 — m2

where we have use the mathematical identity

/ s ST ISR £ (o ) LR |
e =
2mi (k9 + i€)? — w? 0 20 —y? <0
1 . .
= G(IO - yO) 2Wk: (eilwk(m()iyo) — elwk(m()iy()))

Similarly we have
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dsk 1 —ik(x— ik(x—
DAze(yO—xO)/Wm(e k( y)_ek( y))

&PE 1, . 0__0 . 0_.0
—0 o_ .0 / = ik(z—y) (iwk (YT —2”) _ —twi(y  —x”)
00— a?) [ e e ‘ )

_ / Bk k(o) / a1 o)
(2m)3 2mi (kO — ie)? — w?
) dAk e—ik‘(a:—y)

- _Z/ 2m)E (K0 —ie)2 — k2 —m?

Problem 6.3 The operator O can be written in terms of its matrix elements:

0= Z/d"qdmp|q1q2-~-qn>0nm(q1>~-~7qn;p1, coes Pm ) (P1D2-+-Pim|
nm

We claim this is equivalent to
0= Z/d”qdmpagl...a;"apl...amenm(ql, ey Qi DLy ooy Pm)
nm

Note that the ordering of ¢’s and p’s does not matter because all the creation operators commute
with each other and all the annihilation operators commute with each other. Thus both O,,,, and
Chm have the same permutation symmetry in their argumentsﬂ This is important for the proof to
work.

We have to show that we can reproduce all the matrix elements correctly. First it is obvious that
we can reproduce the vacuum expectation by choosing Cyg = Ogg. Now assume we have chosen
Crm such that all matrix elements of order up to n = N and m = M are correctly reproduced.
Let us consider the case when n = N + 1, m = M. For simplicity we have dropped normalization
factors which does not affect the result.

O+ (@, an+13p) = (Olag,...agy ., Z/dnq/dmp/ azi...ag;apfl...aplanm(q’I, s @3 Dy ey D) D)
nm

On the right hand side there will be two type of terms. The first type involves the commutators
[an+l7aZ{] which gives terms involving C(ni1)ar. There are (N + 1)!M! such terms due to the
different combinations and although the different combinations result in different ordering among
the ¢’s and the p’s, the value of C(yy1)a for all these permutations of the momenta is the same.
The second group of terms involves commutators [agy_ , , a;i] between operators in the left and right
states. The remaining operators will pair up resulting in terms including C,,,,, of order n < N, m <
M which have been already fixed due to our assumption. Therefore we have

Owwsiym(g;p) = (N + D)IMICn41)a(g; p) + (fixed terms)

which gives us the correct choice for C(ny1ya(q;p). The case where n = N and m = M + 1 is
almost identical. Therefore by induction the claim is true.

I The proof also works for anti-commutating operators thanks to this because Opq and Chpy will pick up the
same minus sign which then will cancel out.
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Problem 7.1

k3 —m? +ie k3 —m? +ic k3 — m? + ic

iM ~ (ig)®

We need to conserve momentum. Take clockwise as the positive direction for the internal
momenta ki, ks, ks, we have

p1+ k3 =k
D2+ ke =k
p3 + k3 = ko

Thus, let k3 = k, we have

M= — 3/ d'k 1 1 1
T ] A (it k)2 —m2 tie (3 + k)2 —m® +ic k2 —m? + ic

c In position space we have
<¢(a)¢(b)¢(c)> = _Z.gg / d4$ d4y d4Z DF(a7 J})DF(J}, y)DF(ya b)DF(y? Z)DF(Za C)DF(Z7 Z‘)

d By the LSZ formula (we suppress ic for clarity)
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M= [i/d4ae_ip1a(Da +m2)} [L{L( = ig?’/d4x dyd*z Dp(a,:E)DF(%y)DF(y,b)DF(y,z)DF(z,c)Dp(z,x))

= —ig3/d4xd4xd4yd4ze”’”‘DF(:ﬂ,y)eip?yDF(y,z)eimZDF(z,x)

d*k 1 1 1 oo o o
— _93 / d4l' (27[-)14 k% - m2 k_% — m2 k§ - m2 ezplwezkl (wfy)engyezkg (yfz)engzezkg(sz)

1 1 1
k¥ —m?2 k3 —m? k2 —m?

= —93/d4k‘1---5(4)(l)1 + Ky — k3)d@W (pg — k1 4 ko }6W (p3 4 k3 — k2)

1 1 1
k)2 —m?2 (ps — k) —m2 k2 —m?

= —935(4) (pl — P2 —ps)/d4k
(p1 -

_ 3/ d'k 1 1 1
T e it k)2 —m2 (ps k) — m2 k2 —m2

which is exactly the same as the expression in (b). In the last line we dropped the delta function
of total momentum.

Problem 7.2 Using the LSZ formula gives us
Mept = A
5(4)(2 P)Mape = 620 (p1 — p3 — pa)d@ (p2 — ps — ps) + (permutations)
The 3-point amplitude has an additional delta function, as pointed out in section 7.3.2.
Problem 7.3
a We have the usual s,f and u channel scatterings.

b The s channel is forbidden due to charge conservation.

02,2 s022
imge” umge

iM =

t U

d The connected pair of electrons must have the same spin. Therefore there are 2 x 2 = 4
combinations for each of ¢ and w processes. Out of these processes only 2 are common to both
and hence can interfere. The remaining 8 processes with unequal number of up/down spins are
forbidden.
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w4 (2)

2 2\ut
~ miet { 1 N 1 1 }
~ 4p* [(1—cos6)?2  (1+cosf)?2 1 —cos?f

(cross-section?)
Problem 7.4

a Neglecting the disconnected graphs, we have

+
@

etc.
The black dot denotes mass coupling m?.

b
GO - DF(Z‘,y)
:/d4keik(w—y)#
G, = —imz/d‘luDF(x,u)DF(my)
. 4 ik(x— { 2
:—zmQ/d k etk y)<ﬁ)
Ga = (=im®)? [ dtud's Di(o,w)Dr(u,0)Di(0,1)
3
= (—im?)? /d4k ih(a— y>(k2)
etc.

¢ Summing over the series gives

4 o 1 \"
G = /dk— —zmﬁ)

which is just the massive propagator.
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d The equation for the propagator is
OG +m?G = —id™W(z — y)

The zeroth order solution is )
Qo _ / e eik(wy)é

The first order solution is

0GW +m2G® =0

—m2

O

. 2
1) _ 47, ik(z—y) L T
G(),/d,w( vl

a) — el
All higher orders are given by the recursion
(n1) _ = ()
G n — G n
O

which leads to ) )
n) _ 4 m " ik(x—
= () e

which again sums to the massive propagator.

Problem 7.5
Problem 7.8
a
1 1 o1 1 1 )
L= —ieDe - i,u(D +my, ) — 5”#5% - §VeDVe - §W(D + mp )W + g(uv, W + ev. W)

b We work in the center of momentum frame and take the direction of the outgoing muon
neutrino as the z-axis.

iM = (ig)?
(Pu — Pop)? — m%/v
4 2(m? —m,E,,)
g u Ly
M* m? <1+ - m?2 — )
w w
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¢ M is dimensionless so g appears to have dimension of mass. We can make it dimensionless
by inserting m,,.

4m? 2(m? —m,E,
|M‘2:g4#(1+ ( u 2# M))
My, myy

The decay rate is (after integrating over E,,,)

__g'm, € 3mi)
= 7 \o 2

19273my, \2  4mg,

d To give an order of magnitude estimate of my, let us take g ~ 0.1. Ignoring the second
term in the bracket we can estimate my, to be

(Per)' s 2
19273 2
myy ~ 2509 GeV

mw ~ 0(10) GeV

9

e We take the ratio of lifetimes to have

(&)5 _ T
my T

m, ~ 2500 MeV

I'=17.8%T s
m, =~ 1767 MeV

g We can measure the decay width of muon up to leading order to get the ratio g/mw and
then measure the decay width of tau up to NLO to fit out my and thus g. Of course we can also
measure both widths up to NLO, which would require much higher precision. Assuming we know
the mass of muon and tau to high precision, either of these will allow us to fit both g and my
rather than just the ratio. The minimum precision we need is on the order of

ST (o

= )2 ~ 0.05%

mw

Problem 7.7
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a Due to the external legs the symmetry factor is 1. To write down the amplitude using Feyn-
man rules we first need to fully implement all the momentum conservations at vertices. Denoting
the external momenta as p;’s (all outgoing except p1) and the internal momenta as k;’s, we have

pr =k + ko + k3
P2 =k1—ky — ks
pP3 = kg + k5 + k6
pa = ko + kg — kg

This is 4 equations for 6 unknowns but only 3 equations are linearly independent due to total

momentum conservation. Writing everything in terms of k1, ko, k3 and p;’s, we have
1

k4=§(p1—k‘1—k2—k3)
1
k5=§(173+p4—p2+k’1—k2—k3)
1
k6:§(p3*p4+p2*k1+k2*k3)

Integrating over the undetermined momenta, we have

i/\/l—)\4/d4k1d4k2d4k3 111111

(2m)'2 kY k3 k3 k3 k3 kG

with kg, ks, ke given above.

b The symmetry factor simply corresponds to permuatation of the vertices, i.e. S = 4!. Thus,

M=

T T ruETER

)\4/d4k1d4k2d4k3 111111
(2m)'2 ki k3 k3 kG RS kG

with all p;’s set to zero.
Problem 7.9

a For s-channel the mediating particle has momentum s = (p; + p2)? thus

1
MQN 2
M| Isfm2+imf|
1 1
o~ =
s (s —m?2)?2 + m?2I2

b Let us take the constant of proportionally to be m® by changing to suitable units, and let

r=s/m? e 1 X
Tlw—1)2+ (%)2

For T'/m large the cross-section looks 1/x for small z and decays as x =2 for large x (left below).
For T'/m small the cross-section has a sharp peak around x = 1 (right below).
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C
1
M p2 —m?2 + e
€
Im(M) = - lim (P2 — m2)2 + €2
= —76(p* — m?)

where we have use the limit representation of delta function given by lim, o 2/(2?+12) = md(t).
Therefore when the particle is off-shell the imaginary part is zero.

d Assume that the amplitude of the loop diagram is M., = A + ¢X. Then we have

D;:idressed) - DF + DF(iMloop)DF + DF(iMloop)DF(iMloop)DF + ...
) 1

=2 2 Aris
p 7m01+p2i:n2

i
Cp2—(mE—A)+ix
1

p2 —m?2+iX

The real part of the loop diagram leads to some renormalization of the mass which we are not
interested in. The imaginary part leads to a decay width given by

r=%/m

e We can interpret the results of parts ¢ and d using virtual particles. When a particle is
propagating it is constantly turning into some virtual particles and back due to interaction with the
non-trivial vacuum. For example in part d ¢ is constantly turning into «’s and back to ¢. When
the kinematics allows, the virtual particles can go on-shell and materialize. Physically then one
observes a decay from the original particle to these newly materialized particles. Mathematically,
as we have seen in part c, the “on-shelling” leads to a non-zero imaginary part in the amplitude.
This in turn lead to a decay width in the propagator as shown in part d. We also see in part d
that we expect the decay width to be proportional to the strength of interaction. This makes sense

because the stronger the interaction with the virtual sea the higher the chance that the original
particle will turn into the decay product.
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